Quantitative Aptitude
Q.111) (c)

Explanation:
$\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+\mathrm{E}=100 \%$
$2 \mathrm{X} \%+20 \%+22 \%+\mathrm{X} \%+13 \%=100 \%$
$3 \mathrm{X} \%+55 \%=100 \%$
$3 \mathrm{X} \%=45 \%$
$\mathrm{X}=15 \%$
So, $\mathrm{A}=30 \%$
And D $=15 \%$
Now, $\mathrm{E}+\mathrm{B}+\mathrm{C}+\mathrm{D}=100-\mathrm{A}=70 \%$
Also, $\mathrm{A}+\mathrm{C}+\mathrm{D}+\mathrm{E}=100-\mathrm{B}=80 \%$
Required fraction $=7 / 8$
Q.112) (b)

Explanation:

Laptops sold by E $=13 \%$ of $200=26$
Laptops sold by $\mathrm{K}=1.5 \times 26=39$
Non-Gaming laptops sold by $K=2 / 3 \times 39=26$
Q.113) (d)

Explanation:
Laptops sold by A $=30 \%$
Laptops sold by A (in degrees) $=30 / 100 \times 360=108$
Q.114) (d)

Explanation:

	Percentage share	Laptops sold
A	30%	120
B	13%	52
C	22%	88
D	15%	60
E	20%	80

Q.115) (b)

Explanation:
In the next month,
Increase in laptops sold by C $=0.25 \times(22 \% \times 200)=11$
Laptops sold by $\mathrm{D}=1 / 5 \times(15 \% \times 200)=6$
Net increase in total laptops sold $=11-6=5$
So, total laptops sold $=200+5=205$
New average $=205 / 5=41$
Q.116) (e)

Explanation:
The pattern is as follows:
$12+3^{2}=21$
$21+5^{2}=46$
$46+7^{2}=95$
$95+9^{2}=176$
$176+11^{2}=297=\mathrm{X}$
$297+13^{2}=466=\mathrm{Y}$
$\mathrm{X}+\mathrm{Y}=297+466=763$
Q.117) (c)

Explanation:

The pattern of series I is as follows:
$158-80=78$
$78-40=38$
$38-20=18$
$18-10=8$
$8-5=3=X$
The pattern of series II is as follows:

So, $\mathrm{X}=3$
And 7Y $=21 \times 7=147$
So, $3 \neq 7$
Hence, statement 1 is not true.
$3<\mathrm{X}<\mathrm{Y}<21$ is not true since $\mathrm{X}=3$ and $\mathrm{Y}=21$.
So, statement 2 is not true.
$4(\mathrm{Y}+3.5)=11(\mathrm{X})^{2}-1$
$4(21+3.5)=11(9)-1$
$4(24.5)=98$
$98=98$
So, statement 3 is true.
Q.118) (a)

Explanation:
$4 x^{2}-16 x+C=0$
Now, substitute 1.5 for x in order to find out the value of ' C '
$4(1.5)^{2}-16(1.5)+C=0$
$4(2.25)-16(1.5)+\mathrm{C}=0$
$9-24+\mathrm{C}=0$
C $=15$
Sum of roots $=-b / a=16 / 4=4$
So, the other root of equation $\mathrm{I}=4-1.5=2.5$ (larger root)
Consider $2 \mathrm{y}^{2}-3 \mathrm{y}+1=0$
Roots $=\left\{-\mathrm{b} \pm \sqrt{ }\left(\mathrm{b}^{2}-4 \mathrm{ac}\right)\right\} / 2 \mathrm{a}$
$\{3 \pm \sqrt{ }(9-8)\} / 4$
Roots $=4 / 4,2 / 4$
Roots $=1,0.5$
So, sum of larger roots $=2.5+1=3.5$
Q.119) (d)

Explanation:
$4 x^{2}-16 x+C=0$
Now, substitute 1.5 for x in order to find out the value of ' C '
$4(1.5)^{2}-16(1.5)+\mathrm{C}=0$
$4(2.25)-16(1.5)+\mathrm{C}=0$
$9-24+\mathrm{C}=0$
$\mathrm{C}=15$
Sum of digits of $\mathrm{C}=1+5=6$
Q.120) (e)

Explanation:

	Boys	Girls	Total
A	3 x	5 x	8 x
B	$3 \mathrm{x}-\mathrm{y}$	y	3 x
C	y	$5 \mathrm{x}-\mathrm{y}$	5 x
Total	6 x	10 x	16 x

30% girls are in section C
So, 0.3(10x) $=5 \mathrm{x}-\mathrm{y}$
$3 \mathrm{x}=5 \mathrm{x}-\mathrm{y}$
$2 \mathrm{x}=\mathrm{y}$

	Boys	Girls	Total
A	3 x	5 x	8 x
B	x	2 x	3 x
C	2 x	3 x	5 x
Total	6 x	10 x	16 x

$\mathrm{P}=$ number of girls in section $\mathrm{B}=2 \mathrm{x}$
$\mathrm{Q}=$ number of boys in section $\mathrm{A}=3 \mathrm{x}$
$\mathrm{P}=2 / 3$ of Q
$2 \mathrm{x}=2 / 3(3 \mathrm{x})$
$2 \mathrm{x}=2 \mathrm{x}$
So, statement I is true.
$331 / 3 \%$ of total number of girls $=1 / 3(10 x)=10 x / 3$
20% of total boys $=0.2(6 x)=1.2 \mathrm{x}$
$\mathrm{P}=2 \mathrm{x}$
So, statement II is not true.
$3 P=2 Q$
$3(2 \mathrm{x})=2(3 \mathrm{x})$
$6 \mathrm{x}=6 \mathrm{x}$
So, statement III is true.
Q.121) (b)

Explanation:

	Boys	Girls	Total
A	3 x	5 x	8 x
B	X	2 x	3 x
C	2 x	3 x	5 x
Total	6 x	10 x	16 x

Total boys $=6 x$
Boys in section B = x
Required percentage $=x / 6 x=1 / 6=16.67 \%$
Q.122) (c)

Explanation:
Number of books in regional language $=1.25 \times 120=150$
Number of English books $=200-150=50$
Number of English books in percentage $=50 / 200 \times 100=25 \%$
So, $X=25$
Q.123) (b)

Explanation:
Equation Y will have the smallest roots when $\mathrm{a}=5$ and $\mathrm{b}=7$.
Smallest Root $=(7-\sqrt{ }(49-20)) / 10$
$\mathrm{QI}=$ Smallest root $=0.161$ (approx.)
$\mathrm{d} / \mathrm{e}+\mathrm{c} / \mathrm{f}-1=3$
$\mathrm{d} / \mathrm{e}+\mathrm{c} / \mathrm{f}=4$
$6 / 4+5 / 2=1.5+2.5=4$
Also, $6 / 3+4 / 2=2+2=4$
So, $d=6$
$\mathrm{e}=4$ or 3
$\mathrm{c}=5$ or 4
$\mathrm{f}=2$
So, ' f ' is the smallest among the four and its reciprocal is $1 / 2=$ $0.5=$ QII
Hence, QII > QI
Q.124) (b)

Explanation:
$1 / a+1 / b+1$
The above expression will have the maximum value when ' a ' and ' b ' are minimum.
$1 / \mathrm{a}=1 / 4$
$1 / b=1 / 5$
So, $1 / 4+1 / 5+1=(5+4+20) / 20=29 / 20$
$\mathrm{a}^{3}-\mathrm{b}^{2}-4$
The above expression will have minimum value when ' a ' is minimum and ' b ' is maximum
So, $b=9$ and $\mathrm{a}=4$
$4^{3}-9^{2}-4=64-81-4=-21$
So, $(29 / 20-21)<(-9)$
Or, QI < QII
Q.125) (d)

Explanation:
Interest earned by Anshu $=\mathrm{P}\left\{(1.2)^{3}-1\right\}$
$362 / 5 \%$ of $\mathrm{P}=182 / 500 \times \mathrm{P}=91 \mathrm{P} / 250$
Interest earned by Ronit $=(91 \mathrm{P} \times 10 \times \mathrm{T}) /(100 \times 250)$
$\mathrm{P}\{6 / 5 \times 6 / 5 \times 6 / 5-1\}=91 \mathrm{PT} / 2500$
$216 / 125-1=91 \mathrm{~T} / 2500$
$91 / 125=91 \mathrm{~T} / 2500$
$\mathrm{T}=2500 / 125=20$ years

We cannot find out the value of ' P '.
Q.126) (b)

Explanation:
From statement $\mathrm{I}, \mathrm{X}=\mathrm{BA}$; where $\mathrm{A}>1$ and $\mathrm{A}<\mathrm{B}$
From statement II, A = 5 or 6
So, the number $\mathrm{X}=\mathrm{B} 5$ or B 6
From statement III, B $=7(7 \times 5=35$ which is a multiple of 7 and
$7 \mathrm{x} 6=42$ which is also a multiple of 7)
So, $\mathrm{X}=75$ or 76
$\mathrm{Y}=57$ or 67
So, 58 is the closest value from the given options.
Q.127) (b)

Explanation:
Original Milk $=3 \mathrm{P} / 4$
Original water $=\mathrm{P} / 4$
In Statement 1,
New quantity of water $=\mathrm{P} / 4+\mathrm{P} / 4=\mathrm{P} / 2$
New ratio of milk and water $=3 / 4: 1 / 2=3 / 4: 2 / 4=3: 2$
So, water becomes 40% of the total mixture.
Hence, statement 1 is true.
In statement 2,
New quantity of milk $=3 \mathrm{P} / 4-9 \mathrm{P} / 44=24 \mathrm{P} / 44$
New quantity of milk $=\mathrm{P} / 4+9 \mathrm{P} / 44=20 \mathrm{P} / 44$
New ratio $=24: 20=6: 5$
So, statement 2 is also true.
In statement 3,
New quantity of milk $=3 \mathrm{P} / 4 \times 4 / 5 \times 4 / 5=12 \mathrm{P} / 25$
New quantity of water $=\mathrm{P}-12 \mathrm{P} / 25=13 \mathrm{P} / 25$
Ratio $=12: 13=24: 26$
So, statement III is false.
Q.128) (d)

Explanation:
Perimeter of circle $=2 \times 22 / 7 \times r$
Perimeter of rectangle $=2(1+b)$
$\mathrm{L}=\mathrm{Y}$
$B=2 r$ (since the diameter of the circle is equal to the breadth of the rectangle)
Let cost of fencing per metre be ' P '
$(2(\mathrm{Y}+2 \mathrm{r}) \times \mathrm{P}) /(2 \times 22 / 7 \times \mathrm{rxP})=8820 / 4620$
$(\mathrm{Y}+2 \mathrm{r}) /(22 / 7 \mathrm{xr})=21 / 11$
$(\mathrm{Y}+2 \mathrm{r}) / \mathrm{r}=6$
$Y+2 r=6 r$
$\mathrm{Y}=4 \mathrm{r}$
Diagonal of the square $=$ diameter of the circle $=2 r$
So, side of the square $=\sqrt{ } 2 r$
Perimeter of the square $=4 \sqrt{ } 2 r=\sqrt{ } 2 \mathrm{Y}$ metres
Q.129) (e)

Explanation:
From statement I,
$\mathrm{SP}=3162.5 \times 0.8=2530$

Profit $\%=(2530-2200) / 2200=15 \%$
From statement II,
$\mathrm{CP}=10800 / 1.5=7200$
Profit $\%=(8400-7200) / 7200=16.67 \%$
From statement III,
20% of MP = 1650
$\mathrm{MP}=1650 / 0.2=8250$
$\mathrm{SP}=8250-1650=6600$
$\mathrm{CP}=6600-1100=5500$
Profit $\%=1100 / 5500=20 \%$
From statement IV,
25% of MP = 1610
$\mathrm{MP}=1610 / 0.25=6440$
$\mathrm{SP}=6440-1610=4830$
Profit $\%=(4830-4200) / 4200=15 \%$
Q.130) (a)

Explanation:
SP of watch $D=2200 \times 0.89=1958$
CP of $\mathrm{D}=1958+142=2100$
CP of $\mathrm{A}=2100 \times 0.8=1680$
SP of A $=1800 \times 0.77=1386$
Loss on A = 1680-1386=Rs 294
Q.131) (d)

Explanation:
Average loss on B, C, D and $\mathrm{E}=183.25$
$(140+228+142+$ E $) / 4=183.25$
$510+\mathrm{E}=733$
Loss on $\mathrm{E}=223$
So, average loss $=(294+140+228+142+223) / 5=1027 / 5$
= Rs 205.4
Q.132) (c)

Explanation:
16% of CP of $\mathrm{B}=140$
CP of $\mathrm{B}=875$
SP of B $=875-140=735$
MP of $B=735 / 0.85=864.7$
Required percentage $=864.7 / 1200=72 \%$ (approx.)
Q.133) (e)

Explanation:
Total MP of B, C and D $=2400 \times 3=7200$
Sum of MP of B and C=7200-220=5000
MP of $B=16 / 25 \times 5000=3200$
MP of $C=9 / 25 \times 5000=1800$
SP of B $=3200 \times 0.85=2720$
SP of $C=1800 \times 0.78=1404$
$C P$ of $B=2720+140=2860$
$C P$ of $C=1404+228=1632$
CP of $\mathrm{B}+\mathrm{CP}$ of $\mathrm{C}=2860+1632=4492$
Q.134) (b)

Explanation:
Let CP be $6 y$ and MP be 7 y
So, SP = 6y - 140
Also, $\mathrm{SP}=7 \mathrm{y} x 0.85$
Equating both the expressions,
$6 y-140=7 y \times 0.85$
$6 y-140=5.95 y$
$0.05 y=140$
$\mathrm{y}=2800$
$\mathrm{SP}=6(2800)-140=16660$
Q.135) (b)

Explanation:

	Round I	Round II	Round III	
Ball 1	2	6	1	9
Ball 2	4	3	5	12
Ball 3	4	6	5	15
Ball 4	4	3	1	8
	14	18	12	

Required difference $=6-1=5$
Q.136) (d)

Explanation:

	Round I	Round II	Round III	
Ball 1	2	6	1	9
Ball 2	4	3	5	12
Ball 3	4	6	5	15
Ball 4	4	3	1	8
	14	18	12	

Average $=18 / 4=4.5$
Q.137) (c)

Explanation:

	Round I	Round II	Round III	
Ball 1	2	6	1	9
Ball 2	4	3	5	12
Ball 3	4	6	5	15
Ball 4	4	3	1	8
	14	18	12	

Q.138) (d)

Explanation:

	Round I	Round II	Round III	

Ball 1	2	6	1	9
Ball 2	4	3	5	12
Ball 3	4	6	5	15
Ball 4	4	3	1	8
	14	18	12	

Q.139) (b)

Explanation:
From statement 1,
$\mathrm{R}+\mathrm{T}=88$
From statement 2,
$\mathrm{T}+26=\mathrm{R}$
$\mathrm{T}+16=\mathrm{A}$
$\mathrm{R}-26=\mathrm{A}-16$
$\mathrm{R}-\mathrm{A}=10$
From statement 3,
$\mathrm{R}=7 \mathrm{y} ; \mathrm{A}=6 \mathrm{y}$
Combining 1 and 2,
$\mathrm{T}=31 ; \mathrm{R}=57$
So, 1 and 2 together are sufficient.
Combining 2 and 3 ,
$\mathrm{R}-\mathrm{A}=10$
So, $7 \mathrm{y}-6 \mathrm{y}=10$
$y=10$
So, $\mathrm{R}=70$ and $\mathrm{A}=60$
Also, $\mathrm{T}=\mathrm{R}-26$
$\mathrm{T}=70-26=44$
So, 2 and 3 together are also sufficient.
Q.140) (c)

Explanation:
Speed of car $=x \mathrm{~km} / \mathrm{hr}$
So, $x=2 \mathrm{~d} / 8=\mathrm{d} / 4$
Or, $\mathrm{d}=4 \mathrm{x}$
$\mathrm{d} /(\mathrm{x}-\mathrm{y})+\mathrm{d} /(\mathrm{x}+\mathrm{y})=25 / 3$
or, $4 \mathrm{x} /(\mathrm{x}-\mathrm{y})+4 \mathrm{x} /(\mathrm{x}+\mathrm{y})=25 / 3$
$\left(4 x^{2}+4 x y+4 x^{2}-4 x y\right) /\left(x^{2}-y^{2}\right)=25 / 3$
$8 x^{2} /\left(x^{2}-y^{2}\right)=25 / 3$
$24 \mathrm{x}^{2}=25 \mathrm{x}^{2}-25 \mathrm{y}^{2}$
$\mathrm{x}^{2}=25 \mathrm{y}^{2}$
$\mathrm{x}=5 \mathrm{y}$
Also, $72 /(\mathrm{x}+\mathrm{y})=2+24 /(\mathrm{x}-\mathrm{y})$
$72 / 6 y=2+24 / 4 y$
$12 / y=2+6 / y$
$6 / y=2$
$y=3$
So, $x=5 y=15$
And d $=4 \mathrm{x}=60$
Required time $=108 / \mathrm{x}=108 / 15=36 / 5$ hours
Now check for the expressions:
$(2 y(x+y)) / x=6(18) / 15=108 / 15$; so (i) holds
$\{3 y(x-y)\} / x=9(12) / 15=108 / 15$; so (ii) holds $\{2 \mathrm{x}(\mathrm{x}+\mathrm{y})\} / \mathrm{y}=30(18) / 3=180$; so (iii) does not hold

